Do neural speech models show human-like linguistic biases in speech perception?

Marianne de Heer Kloots^{*,1}, Willem Zuidema¹

¹Institute for Logic, Language and Computation; University of Amsterdam, The Netherlands *m.l.s.deheerkloots@uva.nl

Human speech sound categorization is linguistically informed

For example by phonotactic admissability: In English, *TL vs. TR SL vs. *SR

Contrastive

learning

Supervised

ASR

elf-attentior

Transformer layers (×12)

Convolution layers (×7)

Temporal convolution

Training objective

Masked

prediction

Unsupervised

Contextual representations

Local feature extractions

Results

Voice A

3

When hearing acoustically ambiguous speech sounds, humans are biased towards perceiving the most likely phoneme given the surrounding phonotactic context^[1].

Neural speech models like Wav2Vec2^[2] _____ operate on the raw waveform and are pre-trained on a *self-supervised* masked audio segment prediction task.

> Do similar perceptual biases emerge in Wav2Vec2?

And how can we localize them?

We compare 7 Wav2Vec2 models

4 base models (12 layers):

- untrained 🔀
- pre-trained on acoustic scenes (
- pre-trained on speech \bigcirc
- 3 large models (24 layers)
- untrained 💽
- pre-trained on speech \bigcirc
- pre-trained on speech &

 pre-trained on speech & fine-tuned on text transcription \$\overline{\mathbf{T}}\$ fine-tuned on text transcription $\bigcirc + \mathbf{T}$

Using a controlled set of stimuli

11-step acoustic continua between /l/ and /r/

- interpolating on fundamental frequency, spectral envelope, and aperiodic component parameters with the WORLD vocoder GUI^[3]
- 3 phonotactic contexts:

2 voices (Google TTS en-US-Standard-A and en-US-Standard-E)

And 3 analysis methods

Probing classifier probabilities
 Binary logistic regression probes trained

0 5 10 0

Comparing models and analysis methods:

- Phonotactic sensitivity is amplified by ASR finetuning, but also present in fully selfsupervised models when pre-trained on speech (but not acoustic scenes)
- The embedding similarity measure is most sensitive to distinct characteristics of different models'
 representational spaces

 The CTC-lens measure deviates from the

other analysis measures in the large model architecture — phonological information encoded in earlier layers may only later get transformed into a format that the CTC head can map to orthographic predictions

Conclusions & Next steps

on 4000 phonetically transcribed word pronunciations from TIMIT

Z_{2} T_{1} T_{1

CTC-lens probabilities

Output of the text-transcribing CTC head when processing the hidden states from intermediate Transformer blocks

Embedding similarities

Based on cosine distances between hidden states for the morphing target sound (X) and the unambiguous continuum endpoints $sim(X, `R') = 1 - \frac{1}{D_{cos}(X)}$

 $sim(X, \mathbf{\hat{R}'}) = 1 - \frac{D_{cos}(X, \mathbf{\hat{R}'})}{D_{cos}(X, \mathbf{\hat{R}'}) + D_{cos}(X, \mathbf{\hat{L}'})}$

- Internal representations of Wav2Vec2 models trained on English speech show human-like adaptation to phonotactic constraints
- A symbolic training objective like character prediction is not necessary for the Wav2Vec2 model to implicitly learn information about English phonotactic structure
- Similar phonetic categorization paradigms will allow us to examine the presence of more abstract (e.g., lexical and syntactic) biases, and their robustness across different model architectures

[1] Massaro, D. W., & Cohen, M. M. (1983). Phonological context in speech perception. Perception & psychophysics, 34(4), 338-348. https://doi.org/10.3758/BF03203046

[2] Baevski, A., Zhou, Y., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. Advances in Neural Information Processing Systems, 33, 12449-12460. https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html

[3] Kawahara, H., & Morise, M. (2024). Interactive tools for making vocoder-based signal processing accessible: Flexible manipulation of speech attributes for explorational research and education. Acoustical Science and Technology, 45(1), 48-51. https://doi.org/10.1250/ast.e23.52 [4] Garofolo, John S., et al. (1993). TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1. *Philadelphia: Linguistic Data Consortium*. https://catalog.ldc.upenn.edu/LDC93S1