
•	 Phonotactic sensitivity 
is amplified by ASR 
finetuning, but also 
present in fully self-
supervised models when 
pre-trained on speech 
(but not acoustic scenes)

•	 The embedding similarity 
measure is most sensitive 
to distinct characteristics 
of different models’ 
representational spaces

•	 The CTC-lens measure 
deviates from the 
other analysis measures in the large model architecture — phonological 
information encoded in earlier layers may only later get transformed into a 
format that the CTC head can map to orthographic predictions
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In the ASR-finetuned model, character output probabilities are aligned 
with final layer embedding similarities

2. Sensitivity to phonotactic 
context emerges around 
layer 4 of the model’s 
Transformer module
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3. Comparing models and analysis methods:
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Conclusions & Next steps
•	 Internal representations of Wav2Vec2 models trained on English speech 
show human-like adaptation to phonotactic constraints 

•	 A symbolic training objective like character prediction is not 
necessary for the Wav2Vec2 model to implicitly learn information about 
English phonotactic structure 

•	 Similar phonetic categorization paradigms will allow 
us to examine the presence of more abstract (e.g., 
lexical and syntactic) biases, and their robustness 
across different model architectures
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We compare 7 Wav2Vec2 models
4 base models (12 layers): 3 large models (24 layers)
•	 untrained
•	 pre-trained on acoustic scenes
•	 pre-trained on speech
•	 pre-trained on speech & 	
fine-tuned on text transcription +

•	 untrained
•	 pre-trained on speech
•	 pre-trained on speech & 	
fine-tuned on text 	
transcription +

•	 CTC-lens probabilities 
Output of the text-transcribing CTC head when processing the hidden 
states from intermediate Transformer blocks

•	 Embedding similarities	
Based on cosine distances between hidden states for the 	
morphing target sound (X) and the 	
unambiguous continuum endpoints

And 3 analysis methods
•	 Probing classifier probabilities

Binary logistic regression probes trained 
on 4000 phonetically transcribed word 
pronunciations from TIMIT
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Using a controlled set of stimuli
•	 11-step acoustic continua between /l/ and /r/

•	 interpolating on fundamental frequency, spectral envelope, and aperiodic 
component parameters with the WORLD vocoder GUI[3]

•	 3 phonotactic contexts:

T IH? S IH? V IH?/l/ inadmissable
/r/ admissable

/r/ inadmissable
/l/ admissable

both	
unlikely

•	 2 voices (Google TTS en-US-Standard-A and en-US-Standard-E)
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Human speech sound categorization is  
linguistically informed
For example by phonotactic admissability:
In English, vs.

vs.
*TL

*SRSL
TR

When hearing acoustically ambiguous 
speech sounds, humans are biased towards 
perceiving the most likely phoneme given the 
surrounding phonotactic context[1].

Neural speech models like Wav2Vec2[2] 
operate on the raw waveform and are 	
pre-trained on a self-supervised masked 
audio segment prediction task.

Do similar perceptual biases 
emerge in Wav2Vec2?

And how can we localize them?
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(Massaro & Cohen, 1983)


